Paper Reading AI Learner

Dual Goal Representations

2025-10-08 07:07:39
Seohong Park, Deepinder Mann, Sergey Levine

Abstract

In this work, we introduce dual goal representations for goal-conditioned reinforcement learning (GCRL). A dual goal representation characterizes a state by "the set of temporal distances from all other states"; in other words, it encodes a state through its relations to every other state, measured by temporal distance. This representation provides several appealing theoretical properties. First, it depends only on the intrinsic dynamics of the environment and is invariant to the original state representation. Second, it contains provably sufficient information to recover an optimal goal-reaching policy, while being able to filter out exogenous noise. Based on this concept, we develop a practical goal representation learning method that can be combined with any existing GCRL algorithm. Through diverse experiments on the OGBench task suite, we empirically show that dual goal representations consistently improve offline goal-reaching performance across 20 state- and pixel-based tasks.

Abstract (translated)

在这项工作中,我们提出了用于目标条件强化学习(GCRL)的双重目标表示方法。一个双重目标表示通过“从所有其他状态的距离集合”来描述一个状态;换句话说,它是通过与每个其他状态的时间距离关系来编码该状态的。这种表示方式提供了几个吸引人的理论特性。首先,它仅依赖于环境的内在动力学,并且不受原始状态表示的影响。其次,它包含足够的信息以恢复最佳的目标实现策略,同时能够过滤掉外生噪声。基于这一概念,我们开发了一种实用的目标表示学习方法,可以与任何现有的GCRL算法相结合使用。通过在OGBench任务套件上进行的各种实验,我们在经验上证明了双重目标表示在20个状态和像素基的任务中始终能提高离线目标实现的性能。

URL

https://arxiv.org/abs/2510.06714

PDF

https://arxiv.org/pdf/2510.06714.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot