Abstract
Activation functions govern the expressivity and stability of neural networks, yet existing comparisons remain largely heuristic. We propose a rigorous framework for their classification via a nine-dimensional integral signature S_sigma(phi), combining Gaussian propagation statistics (m1, g1, g2, m2, eta), asymptotic slopes (alpha_plus, alpha_minus), and regularity measures (TV(phi'), C(phi)). This taxonomy establishes well-posedness, affine reparameterization laws with bias, and closure under bounded slope variation. Dynamical analysis yields Lyapunov theorems with explicit descent constants and identifies variance stability regions through (m2', g2). From a kernel perspective, we derive dimension-free Hessian bounds and connect smoothness to bounded variation of phi'. Applying the framework, we classify eight standard activations (ReLU, leaky-ReLU, tanh, sigmoid, Swish, GELU, Mish, TeLU), proving sharp distinctions between saturating, linear-growth, and smooth families. Numerical Gauss-Hermite and Monte Carlo validation confirms theoretical predictions. Our framework provides principled design guidance, moving activation choice from trial-and-error to provable stability and kernel conditioning.
Abstract (translated)
激活函数决定了神经网络的表达能力和稳定性,然而现有的比较大多基于启发式方法。我们提出了一种通过九维积分签名S_sigma(φ)来严格分类这些函数的方法,该签名结合了高斯传播统计量(m1, g1, g2, m2, eta)、渐近斜率(alpha_plus, alpha_minus)以及平滑度指标(TV(phi'), C(phi)。这一分类体系确立了良好定义性、带有偏置的仿射再参数化规律,并且在有界斜率变化下封闭。动态分析产生了具有明确下降常数的Lyapunov定理,通过(m2', g2)识别方差稳定性区域。从核函数的角度来看,我们推导出无维度的Hessian界限,并将平滑度与phi'的有界变异相连。应用此框架,我们将八种标准激活函数(ReLU、Leaky-ReLU、tanh、sigmoid、Swish、GELU、Mish和TeLU)进行了分类,证明了饱和型、线性增长型和平滑型之间的清晰区别。数值高斯-赫尔密特及蒙特卡洛验证证实了理论预测的准确性。我们的框架为激活函数的设计提供了原则性的指导,从试错法转向可证稳定性与核条件下的优化选择。
URL
https://arxiv.org/abs/2510.08456