Paper Reading AI Learner

InstructX: Towards Unified Visual Editing with MLLM Guidance

2025-10-09 17:26:09
Chong Mou, Qichao Sun, Yanze Wu, Pengze Zhang, Xinghui Li, Fulong Ye, Songtao Zhao, Qian He

Abstract

With recent advances in Multimodal Large Language Models (MLLMs) showing strong visual understanding and reasoning, interest is growing in using them to improve the editing performance of diffusion models. Despite rapid progress, most studies lack an in-depth analysis of MLLM design choices. Moreover, the integration of MLLMs and diffusion models remains an open challenge in some difficult tasks, such as video editing. In this paper, we present InstructX, a unified framework for image and video editing. Specifically, we conduct a comprehensive study on integrating MLLMs and diffusion models for instruction-driven editing across diverse tasks. Building on this study, we analyze the cooperation and distinction between images and videos in unified modeling. (1) We show that training on image data can lead to emergent video editing capabilities without explicit supervision, thereby alleviating the constraints imposed by scarce video training data. (2) By incorporating modality-specific MLLM features, our approach effectively unifies image and video editing tasks within a single model. Extensive experiments demonstrate that our method can handle a broad range of image and video editing tasks and achieves state-of-the-art performance.

Abstract (translated)

随着多模态大型语言模型(MLLMs)在视觉理解和推理方面取得的显著进展,人们对利用这些模型来提升扩散模型编辑性能的兴趣日益增长。尽管取得了快速进步,但大多数研究缺乏对MLLM设计选择的深入分析。此外,在一些困难任务中,如视频编辑,将MLLM与扩散模型相结合仍然是一个开放性挑战。在本文中,我们提出了InstructX,这是一个用于图像和视频编辑的统一框架。具体来说,我们在各种任务上进行了关于集成MLLM和扩散模型以进行指令驱动编辑的全面研究。在此基础上,我们分析了在统一分模态建模中,图像与视频之间的合作与区别。 (1)我们展示了在仅基于图像数据训练的情况下,可以产生不需要显式监督的视频编辑能力,从而缓解由于缺乏大量视频训练数据而带来的限制。 (2)通过引入特定于模态的MLLM特征,我们的方法能够在一个模型中有效地统一处理图像和视频编辑任务。大量的实验表明,我们提出的方法能够处理广泛的图像和视频编辑任务,并且在性能上达到了最先进的水平。

URL

https://arxiv.org/abs/2510.08485

PDF

https://arxiv.org/pdf/2510.08485.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot