Paper Reading AI Learner

Better Together: Leveraging Unpaired Multimodal Data for Stronger Unimodal Models

2025-10-09 17:32:23
Sharut Gupta, Shobhita Sundaram, Chenyu Wang, Stefanie Jegelka, Phillip Isola

Abstract

Traditional multimodal learners find unified representations for tasks like visual question answering, but rely heavily on paired datasets. However, an overlooked yet potentially powerful question is: can one leverage auxiliary unpaired multimodal data to directly enhance representation learning in a target modality? We introduce UML: Unpaired Multimodal Learner, a modality-agnostic training paradigm in which a single model alternately processes inputs from different modalities while sharing parameters across them. This design exploits the assumption that different modalities are projections of a shared underlying reality, allowing the model to benefit from cross-modal structure without requiring explicit pairs. Theoretically, under linear data-generating assumptions, we show that unpaired auxiliary data can yield representations strictly more informative about the data-generating process than unimodal training. Empirically, we show that using unpaired data from auxiliary modalities -- such as text, audio, or images -- consistently improves downstream performance across diverse unimodal targets such as image and audio. Our project page: this https URL

Abstract (translated)

传统的多模态学习者为诸如视觉问答之类的任务找到了统一的表示方法,但它们严重依赖于配对的数据集。然而,一个被忽视但仍可能具有强大潜力的问题是:能否利用辅助未配对的多模态数据直接增强目标模态中的表征学习?我们引入了UML(Unpaired Multimodal Learner),这是一种模态不可知的训练范式,在这种范式中,单一模型交替处理来自不同模态的输入,并在它们之间共享参数。这一设计利用了一个假设,即不同的模态是共同基础现实的不同投影,使模型能够在没有明确配对的情况下从跨模态结构中受益。 理论上,在线性数据生成假设下,我们展示了未配对辅助数据可以提供比单一模态训练关于数据生成过程更为严格的表征信息。经验上,我们证明了使用来自辅助模态(如文本、音频或图像)的未配对数据能够一致地提高各种单一模态目标(例如图像和音频)的下游性能。 我们的项目页面:[请在此处插入实际链接]

URL

https://arxiv.org/abs/2510.08492

PDF

https://arxiv.org/pdf/2510.08492.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot