Paper Reading AI Learner

Learning Rate Dropout

2019-11-30 06:58:40
Huangxing Lin, Weihong Zeng, Xinghao Ding, Yue Huang, Chenxi Huang, John Paisley

Abstract

The performance of a deep neural network is highly dependent on its training, and finding better local optimal solutions is the goal of many optimization algorithms. However, existing optimization algorithms show a preference for descent paths that converge slowly and do not seek to avoid bad local optima. In this work, we propose Learning Rate Dropout (LRD), a simple gradient descent technique for training related to coordinate descent. LRD empirically aids the optimizer to actively explore in the parameter space by randomly setting some learning rates to zero; at each iteration, only parameters whose learning rate is not 0 are updated. As the learning rate of different parameters is dropped, the optimizer will sample a new loss descent path for the current update. The uncertainty of the descent path helps the model avoid saddle points and bad local minima. Experiments show that LRD is surprisingly effective in accelerating training while preventing overfitting.

Abstract (translated)

URL

https://arxiv.org/abs/1912.00144

PDF

https://arxiv.org/pdf/1912.00144.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot