Paper Reading AI Learner

Totally Deep Support Vector Machines

2019-12-12 10:18:17
Hichem Sahbi

Abstract

Support vector machines (SVMs) have been successful in solving many computer vision tasks including image and video category recognition especially for small and mid-scale training problems. The principle of these non-parametric models is to learn hyperplanes that separate data belonging to different classes while maximizing their margins. However, SVMs constrain the learned hyperplanes to lie in the span of support vectors, fixed/taken from training data, and this reduces their representational power and may lead to limited generalization performances. In this paper, we relax this constraint and allow the support vectors to be learned (instead of being fixed/taken from training data) in order to better fit a given classification task. Our approach, referred to as deep total variation support vector machines, is parametric and relies on a novel deep architecture that learns not only the SVM and the kernel parameters but also the support vectors, resulting into highly effective classifiers. We also show (under a particular setting of the activation functions in this deep architecture) that a large class of kernels and their combinations can be learned. Experiments conducted on the challenging task of skeleton-based action recognition show the outperformance of our deep total variation SVMs w.r.t different baselines as well as the related work.

Abstract (translated)

URL

https://arxiv.org/abs/1912.05864

PDF

https://arxiv.org/pdf/1912.05864.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot