Paper Reading AI Learner

Towards Robust Toxic Content Classification

2019-12-14 16:03:15
Keita Kurita, Anna Belova, Antonios Anastasopoulos

Abstract

Toxic content detection aims to identify content that can offend or harm its recipients. Automated classifiers of toxic content need to be robust against adversaries who deliberately try to bypass filters. We propose a method of generating realistic model-agnostic attacks using a lexicon of toxic tokens, which attempts to mislead toxicity classifiers by diluting the toxicity signal either by obfuscating toxic tokens through character-level perturbations, or by injecting non-toxic distractor tokens. We show that these realistic attacks reduce the detection recall of state-of-the-art neural toxicity detectors, including those using ELMo and BERT, by more than 50% in some cases. We explore two approaches for defending against such attacks. First, we examine the effect of training on synthetically noised data. Second, we propose the Contextual Denoising Autoencoder (CDAE): a method for learning robust representations that uses character-level and contextual information to denoise perturbed tokens. We show that the two approaches are complementary, improving robustness to both character-level perturbations and distractors, recovering a considerable portion of the lost accuracy. Finally, we analyze the robustness characteristics of the most competitive methods and outline practical considerations for improving toxicity detectors.

Abstract (translated)

URL

https://arxiv.org/abs/1912.06872

PDF

https://arxiv.org/pdf/1912.06872.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot