Paper Reading AI Learner

On the distance between two neural networks and the stability of learning

2020-02-09 19:18:39
Jeremy Bernstein, Arash Vahdat, Yisong Yue, Ming-Yu Liu

Abstract

How far apart are two neural networks? This is a foundational question in their theory. We derive a simple and tractable bound that relates distance in function space to distance in parameter space for a broad class of nonlinear compositional functions. The bound distills a clear dependence on depth of the composition. The theory is of practical relevance since it establishes a trust region for first-order optimisation. In turn, this suggests an optimiser that we call Frobenius matched gradient descent---or Fromage. Fromage involves a principled form of gradient rescaling and enjoys guarantees on stability of both the spectra and Frobenius norms of the weights. We find that the new algorithm increases the depth at which a multilayer perceptron may be trained as compared to Adam and SGD and is competitive with Adam for training generative adversarial networks. We further verify that Fromage scales up to a language transformer with over $10^8$ parameters. Please find code & reproducibility instructions at: this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2002.03432

PDF

https://arxiv.org/pdf/2002.03432.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot