Paper Reading AI Learner

A Unified End-to-End Framework for Efficient Deep Image Compression

2020-02-11 03:09:04
Jiaheng Liu, Guo Lu, Zhihao Hu, Dong Xu

Abstract

Image compression is a widely used technique to reduce the spatial redundancy in images. Recently, learning based image compression has achieved significant progress by using the powerful representation ability from neural networks. However, the current state-of-the-art learning based image compression methods suffer from the huge computational complexity, which limits their capacity for practical applications. In this paper, we propose a unified framework called Efficient Deep Image Compression (EDIC) based on three new technologies, including a channel attention module, a Gaussian mixture model and a decoder-side enhancement module. Specifically, we design an auto-encoder style network for learning based image compression. To improve the coding efficiency, we exploit the channel relationship between latent representations by using the channel attention module. Besides, the Gaussian mixture model is introduced for the entropy model and improves the accuracy for bitrate estimation. Furthermore, we introduce the decoder-side enhancement module to further improve image compression performance. Our EDIC method can also be readily incorporated with the Deep Video Compression (DVC) framework to further improve the video compression performance. Simultaneously, our EDIC method boosts the coding performance significantly while bringing slightly increased computational complexity. More importantly, experimental results demonstrate that the proposed approach outperforms the current state-of-the-art image compression methods and is up to more than 150 times faster in terms of decoding speed when compared with Minnen's method. The proposed framework also successfully improves the performance of the recent deep video compression system DVC.

Abstract (translated)

URL

https://arxiv.org/abs/2002.03370

PDF

https://arxiv.org/pdf/2002.03370.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot