Paper Reading AI Learner

Poisson Kernel Avoiding Self-Smoothing in Graph Convolutional Networks

2020-02-07 02:25:11
Ziqing Yang, Shoudong Han, Jun Zhao

Abstract

Graph convolutional network (GCN) is now an effective tool to deal with non-Euclidean data, such as social networks in social behavior analysis, molecular structure analysis in the field of chemistry, and skeleton-based action recognition. Graph convolutional kernel is one of the most significant factors in GCN to extract nodes' feature, and some improvements of it have reached promising performance theoretically and experimentally. However, there is limited research about how exactly different data types and graph structures influence the performance of these kernels. Most existing methods used an adaptive convolutional kernel to deal with a given graph structure, which still not reveals the internal reasons. In this paper, we started from theoretical analysis of the spectral graph and studied the properties of existing graph convolutional kernels. While taking some designed datasets with specific parameters into consideration, we revealed the self-smoothing phenomenon of convolutional kernels. After that, we proposed the Poisson kernel that can avoid self-smoothing without training any adaptive kernel. Experimental results demonstrate that our Poisson kernel not only works well on the benchmark dataset where state-of-the-art methods work fine, but also is evidently superior to them in synthetic datasets.

Abstract (translated)

URL

https://arxiv.org/abs/2002.02589

PDF

https://arxiv.org/pdf/2002.02589.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot