Paper Reading AI Learner

Discoverability in Satellite Imagery: A Good Sentence is Worth a Thousand Pictures

2020-01-03 20:41:18
David Noever, Wes Regian, Matt Ciolino, Josh Kalin, Dom Hambrick, Kaye Blankenship

Abstract

Small satellite constellations provide daily global coverage of the earth's landmass, but image enrichment relies on automating key tasks like change detection or feature searches. For example, to extract text annotations from raw pixels requires two dependent machine learning models, one to analyze the overhead image and the other to generate a descriptive caption. We evaluate seven models on the previously largest benchmark for satellite image captions. We extend the labeled image samples five-fold, then augment, correct and prune the vocabulary to approach a rough min-max (minimum word, maximum description). This outcome compares favorably to previous work with large pre-trained image models but offers a hundred-fold reduction in model size without sacrificing overall accuracy (when measured with log entropy loss). These smaller models provide new deployment opportunities, particularly when pushed to edge processors, on-board satellites, or distributed ground stations. To quantify a caption's descriptiveness, we introduce a novel multi-class confusion or error matrix to score both human-labeled test data and never-labeled images that include bounding box detection but lack full sentence captions. This work suggests future captioning strategies, particularly ones that can enrich the class coverage beyond land use applications and that lessen color-centered and adjacency adjectives ("green", "near", "between", etc.). Many modern language transformers present novel and exploitable models with world knowledge gleaned from training from their vast online corpus. One interesting, but easy example might learn the word association between wind and waves, thus enriching a beach scene with more than just color descriptions that otherwise might be accessed from raw pixels without text annotation.

Abstract (translated)

URL

https://arxiv.org/abs/2001.05839

PDF

https://arxiv.org/pdf/2001.05839.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot