Paper Reading AI Learner

Think Locally, Act Globally: Federated Learning with Local and Global Representations

2020-01-06 12:40:21
Paul Pu Liang, Terrance Liu, Liu Ziyin, Ruslan Salakhutdinov, Louis-Philippe Morency

Abstract

Federated learning is an emerging research paradigm to train models on private data distributed over multiple devices. A key challenge involves keeping private all the data on each device and training a global model only by communicating parameters and updates. Overcoming this problem relies on the global model being sufficiently compact so that the parameters can be efficiently sent over communication channels such as wireless internet. Given the recent trend towards building deeper and larger neural networks, deploying such models in federated settings on real-world tasks is becoming increasingly difficult. To this end, we propose to augment federated learning with local representation learning on each device to learn useful and compact features from raw data. As a result, the global model can be smaller since it only operates on higher-level local representations. We show that our proposed method achieves superior or competitive results when compared to traditional federated approaches on a suite of publicly available real-world datasets spanning image recognition (MNIST, CIFAR) and multimodal learning (VQA). Our choice of local representation learning also reduces the number of parameters and updates that need to be communicated to and from the global model, thereby reducing the bottleneck in terms of communication cost. Finally, we show that our local models provide flexibility in dealing with online heterogeneous data and can be easily modified to learn fair representations that obfuscate protected attributes such as race, age, and gender, a feature crucial to preserving the privacy of on-device data.

Abstract (translated)

URL

https://arxiv.org/abs/2001.01523

PDF

https://arxiv.org/pdf/2001.01523.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot