Paper Reading AI Learner

Pairwise Neural Networks with Low Memory for Fast On-Device Applications

2020-02-10 02:12:59
Luna M. Zhang

Abstract

A traditional artificial neural network (ANN) is normally trained slowly by a gradient descent algorithm, such as the backpropagation algorithm, since a large number of hyperparameters of the ANN need to be fine-tuned with many training epochs. Since a large number of hyperparameters of a deep neural network, such as a convolutional neural network, occupy much memory, a memory-inefficient deep learning model is not ideal for real-time Internet of Things (IoT) applications on various devices, such as mobile phones. Thus, it is necessary to develop fast and memory-efficient Artificial Intelligence of Things (AIoT) systems for real-time on-device applications. We created a novel wide and shallow 4-layer ANN called "Pairwise Neural Network" ("PairNet") with high-speed non-gradient-descent hyperparameter optimization. The PairNet is trained quickly with only one epoch since its hyperparameters are directly optimized one-time via simply solving a system of linear equations by using the multivariate least squares fitting method. In addition, an n-input space is partitioned into many n-input data subspaces, and a local PairNet is built in a local n-input subspace. This divide-and-conquer approach can train the local PairNet using specific local features to improve model performance. Simulation results indicate that the three PairNets with incremental learning have smaller average prediction mean squared errors, and achieve much higher speeds than traditional ANNs. An important future work is to develop better and faster non-gradient-descent hyperparameter optimization algorithms to generate effective, fast, and memory-efficient PairNets with incremental learning on optimal subspaces for real-time AIoT on-device applications.

Abstract (translated)

URL

https://arxiv.org/abs/2002.04458

PDF

https://arxiv.org/pdf/2002.04458.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot