Paper Reading AI Learner

Learning Deep Gradient Descent Optimization for Image Deconvolution

2020-02-17 06:09:24
Dong Gong, Zhen Zhang, Qinfeng Shi, Anton van den Hengel, Chunhua Shen, Yanning Zhang

Abstract

As an integral component of blind image deblurring, non-blind deconvolution removes image blur with a given blur kernel, which is essential but difficult due to the ill-posed nature of the inverse problem. The predominant approach is based on optimization subject to regularization functions that are either manually designed, or learned from examples. Existing learning based methods have shown superior restoration quality but are not practical enough due to their restricted and static model design. They solely focus on learning a prior and require to know the noise level for deconvolution. We address the gap between the optimization-based and learning-based approaches by learning a universal gradient descent optimizer. We propose a Recurrent Gradient Descent Network (RGDN) by systematically incorporating deep neural networks into a fully parameterized gradient descent scheme. A hyper-parameter-free update unit shared across steps is used to generate updates from the current estimates, based on a convolutional neural network. By training on diverse examples, the Recurrent Gradient Descent Network learns an implicit image prior and a universal update rule through recursive supervision. The learned optimizer can be repeatedly used to improve the quality of diverse degenerated observations. The proposed method possesses strong interpretability and high generalization. Extensive experiments on synthetic benchmarks and challenging real-world images demonstrate that the proposed deep optimization method is effective and robust to produce favorable results as well as practical for real-world image deblurring applications.

Abstract (translated)

URL

https://arxiv.org/abs/1804.03368

PDF

https://arxiv.org/pdf/1804.03368


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot