Paper Reading AI Learner

A Quadruplet Loss for Enforcing Semantically Coherent Embeddings in Multi-output Classification Problems

2020-02-26 17:18:53
Hugo Proença, Ehsan Yaghoubi

Abstract

This paper describes one objective function for learning semantically coherent feature embeddings in multi-output classification problems, i.e., when the response variables have dimension higher than one. In particular, we consider the problems of identity retrieval and soft biometrics in visual surveillance environments, which have been attracting growing interests. Inspired by the triplet loss function, we propose a generalization of that concept: a quadruplet loss, that 1) defines a metric that analyzes the number of agreeing labels between pairs of elements; and 2) disregards the notion of anchor, replacing d(A1,A2) < d(A1,B) by d(A,B) < d(C,D) distance constraints, according to such perceived semantic similarity between the elements of each pair. Inherited from the triplet loss formulation, our proposal also privileges small distances between positive pairs, but also explicitly enforces that the distances between negative pairs directly correspond to their similarity in terms of the number of agreeing labels. This typically yields feature embeddings with a strong correspondence between the classes centroids and their semantic descriptions, i.e., where elements that share some of the labels are closer to each other in the destiny space than elements with fully disjoint classes membership. Also, in opposition to its triplet counterpart, the proposed loss is not particularly sensitive to the way learning pairs are mined, being agnostic with regard to demanding criteria for mining learning instances (such as the semi-hard pairs of triplet loss). Our experiments were carried out in four different datasets (BIODI, LFW, Megaface and PETA) and validate our assumptions, showing highly promising results.

Abstract (translated)

URL

https://arxiv.org/abs/2002.11644

PDF

https://arxiv.org/pdf/2002.11644.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot