Paper Reading AI Learner

Unblind Your Apps: Predicting Natural-Language Labels for Mobile GUI Components by Deep Learning

2020-03-01 02:31:26
Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhu, Guoqiang Li, Jinshui Wang

Abstract

According to the World Health Organization(WHO), it is estimated that approximately 1.3 billion people live with some forms of vision impairment globally, of whom 36 million are blind. Due to their disability, engaging these minority into the society is a challenging problem. The recent rise of smart mobile phones provides a new solution by enabling blind users' convenient access to the information and service for understanding the world. Users with vision impairment can adopt the screen reader embedded in the mobile operating systems to read the content of each screen within the app, and use gestures to interact with the phone. However, the prerequisite of using screen readers is that developers have to add natural-language labels to the image-based components when they are developing the app. Unfortunately, more than 77% apps have issues of missing labels, according to our analysis of 10,408 Android apps. Most of these issues are caused by developers' lack of awareness and knowledge in considering the minority. And even if developers want to add the labels to UI components, they may not come up with concise and clear description as most of them are of no visual issues. To overcome these challenges, we develop a deep-learning based model, called LabelDroid, to automatically predict the labels of image-based buttons by learning from large-scale commercial apps in Google Play. The experimental results show that our model can make accurate predictions and the generated labels are of higher quality than that from real Android developers.

Abstract (translated)

URL

https://arxiv.org/abs/2003.00380

PDF

https://arxiv.org/pdf/2003.00380.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot