Paper Reading AI Learner

Firearm Detection and Segmentation Using an Ensemble of Semantic Neural Networks

2020-02-11 13:58:16
Alexander Egiazarov, Vasileios Mavroeidis, Fabio Massimo Zennaro, Kamer Vishi

Abstract

In recent years we have seen an upsurge in terror attacks around the world. Such attacks usually happen in public places with large crowds to cause the most damage possible and get the most attention. Even though surveillance cameras are assumed to be a powerful tool, their effect in preventing crime is far from clear due to either limitation in the ability of humans to vigilantly monitor video surveillance or for the simple reason that they are operating passively. In this paper, we present a weapon detection system based on an ensemble of semantic Convolutional Neural Networks that decomposes the problem of detecting and locating a weapon into a set of smaller problems concerned with the individual component parts of a weapon. This approach has computational and practical advantages: a set of simpler neural networks dedicated to specific tasks requires less computational resources and can be trained in parallel; the overall output of the system given by the aggregation of the outputs of individual networks can be tuned by a user to trade-off false positives and false negatives; finally, according to ensemble theory, the output of the overall system will be robust and reliable even in the presence of weak individual models. We evaluated our system running simulations aimed at assessing the accuracy of individual networks and the whole system. The results on synthetic data and real-world data are promising, and they suggest that our approach may have advantages compared to the monolithic approach based on a single deep convolutional neural network.

Abstract (translated)

URL

https://arxiv.org/abs/2003.00805

PDF

https://arxiv.org/pdf/2003.00805.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot