Paper Reading AI Learner

ADWPNAS: Architecture-Driven Weight Prediction for Neural Architecture Search

2020-03-03 05:06:20
XuZhang, ChenjunZhou, BoGu

Abstract

How to discover and evaluate the true strength of models quickly and accurately is one of the key challenges in Neural Architecture Search (NAS). To cope with this problem, we propose an Architecture-Driven Weight Prediction (ADWP) approach for neural architecture search (NAS). In our approach, we first design an architecture-intensive search space and then train a HyperNetwork by inputting stochastic encoding architecture parameters. In the trained HyperNetwork, weights of convolution kernels can be well predicted for neural architectures in the search space. Consequently, the target architectures can be evaluated efficiently without any finetuning, thus enabling us to search fortheoptimalarchitectureinthespaceofgeneralnetworks (macro-search). Through real experiments, we evaluate the performance of the models discovered by the proposed AD-WPNAS and results show that one search procedure can be completed in 4.0 GPU hours on CIFAR-10. Moreover, the discovered model obtains a test error of 2.41% with only 1.52M parameters which is superior to the best existing models.

Abstract (translated)

URL

https://arxiv.org/abs/2003.01335

PDF

https://arxiv.org/pdf/2003.01335.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot