Paper Reading AI Learner

DEEVA: A Deep Learning and IoT Based Computer Vision System to Address Safety and Security of Production Sites in Energy Industry

2020-03-02 21:26:00
Nimish M. Awalgaonkar, Haining Zheng, Christopher S. Gurciullo

Abstract

When it comes to addressing the safety/security related needs at different production/construction sites, accurate detection of the presence of workers, vehicles, equipment important and formed an integral part of computer vision-based surveillance systems (CVSS). Traditional CVSS systems focus on the use of different computer vision and pattern recognition algorithms overly reliant on manual extraction of features and small datasets, limiting their usage because of low accuracy, need for expert knowledge and high computational costs. The main objective of this paper is to provide decision makers at sites with a practical yet comprehensive deep learning and IoT based solution to tackle various computer vision related problems such as scene classification, object detection in scenes, semantic segmentation, scene captioning etc. Our overarching goal is to address the central question of What is happening at this site and where is it happening in an automated fashion minimizing the need for human resources dedicated to surveillance. We developed Deep ExxonMobil Eye for Video Analysis (DEEVA) package to handle scene classification, object detection, semantic segmentation and captioning of scenes in a hierarchical approach. The results reveal that transfer learning with the RetinaNet object detector is able to detect the presence of workers, different types of vehicles/construction equipment, safety related objects at a high level of accuracy (above 90%). With the help of deep learning to automatically extract features and IoT technology to automatic capture, transfer and process vast amount of realtime images, this framework is an important step towards the development of intelligent surveillance systems aimed at addressing myriads of open ended problems in the realm of security/safety monitoring, productivity assessments and future decision making.

Abstract (translated)

URL

https://arxiv.org/abs/2003.01196

PDF

https://arxiv.org/pdf/2003.01196.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot