Paper Reading AI Learner

Amateur Drones Detection: A machine learning approach utilizing the acoustic signals in the presence of strong interference

2020-02-28 17:28:17
Zahoor Uddin, Muhammad Altaf, Muhammad Bilal, Lewis Nkenyereye, Ali Kashif Bashir

Abstract

Owing to small size, sensing capabilities and autonomous nature, the Unmanned Air Vehicles (UAVs) have enormous applications in various areas, e.g., remote sensing, navigation, archaeology, journalism, environmental science, and agriculture. However, the unmonitored deployment of UAVs called the amateur drones (AmDr) can lead to serious security threats and risk to human life and infrastructure. Therefore, timely detection of the AmDr is essential for the protection and security of sensitive organizations, human life and other vital infrastructure. AmDrs can be detected using different techniques based on sound, video, thermal, and radio frequencies. However, the performance of these techniques is limited in sever atmospheric conditions. In this paper, we propose an efficient unsupervise machine learning approach of independent component analysis (ICA) to detect various acoustic signals i.e., sounds of bird, airplanes, thunderstorm, rain, wind and the UAVs in practical scenario. After unmixing the signals, the features like Mel Frequency Cepstral Coefficients (MFCC), the power spectral density (PSD) and the Root Mean Square Value (RMS) of the PSD are extracted by using ICA. The PSD and the RMS of PSD signals are extracted by first passing the signals from octave band filter banks. Based on the above features the signals are classified using Support Vector Machines (SVM) and K Nearest Neighbor (KNN) to detect the presence or absence of AmDr. Unique feature of the proposed technique is the detection of a single or multiple AmDrs at a time in the presence of multiple acoustic interfering signals. The proposed technique is verified through extensive simulations and it is observed that the RMS values of PSD with KNN performs better than the MFCC with KNN and SVM.

Abstract (translated)

URL

https://arxiv.org/abs/2003.01519

PDF

https://arxiv.org/pdf/2003.01519.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot