Paper Reading AI Learner

Investigating the Decoders of Maximum Likelihood Sequence Models: A Look-ahead Approach

2020-03-08 04:36:04
Yu-Siang Wang, Yen-Ling Kuo, Boris Katz
     

Abstract

We demonstrate how we can practically incorporate multi-step future information into a decoder of maximum likelihood sequence models. We propose a "k-step look-ahead" module to consider the likelihood information of a rollout up to k steps. Unlike other approaches that need to train another value network to evaluate the rollouts, we can directly apply this look-ahead module to improve the decoding of any sequence model trained in a maximum likelihood framework. We evaluate our look-ahead module on three datasets of varying difficulties: IM2LATEX-100k OCR image to LaTeX, WMT16 multimodal machine translation, and WMT14 machine translation. Our look-ahead module improves the performance of the simpler datasets such as IM2LATEX-100k and WMT16 multimodal machine translation. However, the improvement of the more difficult dataset (e.g., containing longer sequences), WMT14 machine translation, becomes marginal. Our further investigation using the k-step look-ahead suggests that the more difficult tasks suffer from the overestimated EOS (end-of-sentence) probability. We argue that the overestimated EOS probability also causes the decreased performance of beam search when increasing its beam width. We tackle the EOS problem by integrating an auxiliary EOS loss into the training to estimate if the model should emit EOS or other words. Our experiments show that improving EOS estimation not only increases the performance of our proposed look-ahead module but also the robustness of the beam search.

Abstract (translated)

URL

https://arxiv.org/abs/2003.03716

PDF

https://arxiv.org/pdf/2003.03716.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot