Paper Reading AI Learner

Neural Generators of Sparse Local Linear Models for Achieving both Accuracy and Interpretability

2020-03-13 18:49:36
Yuya Yoshikawa, Tomoharu Iwata

Abstract

For reliability, it is important that the predictions made by machine learning methods are interpretable by human. In general, deep neural networks (DNNs) can provide accurate predictions, although it is difficult to interpret why such predictions are obtained by DNNs. On the other hand, interpretation of linear models is easy, although their predictive performance would be low since real-world data is often intrinsically non-linear. To combine both the benefits of the high predictive performance of DNNs and high interpretability of linear models into a single model, we propose neural generators of sparse local linear models (NGSLLs). The sparse local linear models have high flexibility as they can approximate non-linear functions. The NGSLL generates sparse linear weights for each sample using DNNs that take original representations of each sample (e.g., word sequence) and their simplified representations (e.g., bag-of-words) as input. By extracting features from the original representations, the weights can contain rich information to achieve high predictive performance. Additionally, the prediction is interpretable because it is obtained by the inner product between the simplified representations and the sparse weights, where only a small number of weights are selected by our gate module in the NGSLL. In experiments with real-world datasets, we demonstrate the effectiveness of the NGSLL quantitatively and qualitatively by evaluating prediction performance and visualizing generated weights on image and text classification tasks.

Abstract (translated)

URL

https://arxiv.org/abs/2003.06441

PDF

https://arxiv.org/pdf/2003.06441.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot