Paper Reading AI Learner

Burst Denoising of Dark Images

2020-03-17 17:17:36
Ahmet Serdar Karadeniz, Erkut Erdem, Aykut Erdem

Abstract

Capturing images under extremely low-light conditions poses significant challenges for the standard camera pipeline. Images become too dark and too noisy, which makes traditional image enhancement techniques almost impossible to apply. Very recently, researchers have shown promising results using learning based approaches. Motivated by these ideas, in this paper, we propose a deep learning framework for obtaining clean and colorful RGB images from extremely dark raw images. The backbone of our framework is a novel coarse-to-fine network architecture that generates high-quality outputs in a progressive manner. The coarse network predicts a low-resolution, denoised raw image, which is then fed to the fine network to recover fine-scale details and realistic textures. To further reduce noise and improve color accuracy, we extend this network to a permutation invariant structure so that it takes a burst of low-light images as input and merges information from multiple images at the feature-level. Our experiments demonstrate that the proposed approach leads to perceptually more pleasing results than state-of-the-art methods by producing much sharper and higher quality images.

Abstract (translated)

URL

https://arxiv.org/abs/2003.07823

PDF

https://arxiv.org/pdf/2003.07823.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot