Paper Reading AI Learner

Learning regularization and intensity-gradient-based fidelity for single image super resolution

2020-03-24 07:03:18
Hu Liang, Shengrong Zhao

Abstract

How to extract more and useful information for single image super resolution is an imperative and difficult problem. Learning-based method is a representative method for such task. However, the results are not so stable as there may exist big difference between the training data and the test data. The regularization-based method can effectively utilize the self-information of observation. However, the degradation model used in regularization-based method just considers the degradation in intensity space. It may not reconstruct images well as the degradation reflections in various feature space are not considered. In this paper, we first study the image degradation progress, and establish degradation model both in intensity and gradient space. Thus, a comprehensive data consistency constraint is established for the reconstruction. Consequently, more useful information can be extracted from the observed data. Second, the regularization term is learned by a designed symmetric residual deep neural-network. It can search similar external information from a predefined dataset avoiding the artificial tendency. Finally, the proposed fidelity term and designed regularization term are embedded into the regularization framework. Further, an optimization method is developed based on the half-quadratic splitting method and the pseudo conjugate method. Experimental results indicated that the subjective and the objective metric corresponding to the proposed method were better than those obtained by the comparison methods.

Abstract (translated)

URL

https://arxiv.org/abs/2003.10689

PDF

https://arxiv.org/pdf/2003.10689.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot