Paper Reading AI Learner

Pseudo-Labeling for Small Lesion Detection on Diabetic Retinopathy Images

2020-03-26 17:13:48
Qilei Chen, Ping Liu, Jing Ni, Yu Cao, Benyuan Liu, Honggang Zhang

Abstract

Diabetic retinopathy (DR) is a primary cause of blindness in working-age people worldwide. About 3 to 4 million people with diabetes become blind because of DR every year. Diagnosis of DR through color fundus images is a common approach to mitigate such problem. However, DR diagnosis is a difficult and time consuming task, which requires experienced clinicians to identify the presence and significance of many small features on high resolution images. Convolutional Neural Network (CNN) has proved to be a promising approach for automatic biomedical image analysis recently. In this work, we investigate lesion detection on DR fundus images with CNN-based object detection methods. Lesion detection on fundus images faces two unique challenges. The first one is that our dataset is not fully labeled, i.e., only a subset of all lesion instances are marked. Not only will these unlabeled lesion instances not contribute to the training of the model, but also they will be mistakenly counted as false negatives, leading the model move to the opposite direction. The second challenge is that the lesion instances are usually very small, making them difficult to be found by normal object detectors. To address the first challenge, we introduce an iterative training algorithm for the semi-supervised method of pseudo-labeling, in which a considerable number of unlabeled lesion instances can be discovered to boost the performance of the lesion detector. For the small size targets problem, we extend both the input size and the depth of feature pyramid network (FPN) to produce a large CNN feature map, which can preserve the detail of small lesions and thus enhance the effectiveness of the lesion detector. The experimental results show that our proposed methods significantly outperform the baselines.

Abstract (translated)

URL

https://arxiv.org/abs/2003.12040

PDF

https://arxiv.org/pdf/2003.12040.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot