Paper Reading AI Learner

Super Resolution for Root Imaging

2020-03-30 15:11:15
Jose F. Ruiz-Munoz, Alina Zare, Jyothier K. Nimmagadda, Shuang Cui, James E. Baciak

Abstract

High-resolution cameras have become very helpful for plant phenotyping by providing a mechanism for tasks such as target versus background discrimination, and the measurement and analysis of fine-above-ground plant attributes, e.g., the venation network of leaves. However, the acquisition of high-resolution (HR) imagery of roots in situ remains a challenge. We apply super-resolution (SR) convolutional neural networks (CNNs) to boost the resolution capability of a backscatter X-ray system designed to image buried roots. To overcome limited available backscatter X-ray data for training, we compare three alternatives for training: i) non-plant-root images, ii) plant-root images, and iii) pretraining the model with non-plant-root images and fine-tuning with plant-root images and two deep learning approaches i) Fast Super Resolution Convolutional Neural Network and ii) Super Resolution Generative Adversarial Network). We evaluate SR performance using signal to noise ratio (SNR) and intersection over union (IoU) metrics when segmenting the SR images. In our experiments, we observe that the studied SR models improve the quality of the low-resolution images (LR) of plant roots of an unseen dataset in terms of SNR. Likewise, we demonstrate that SR pre-processing boosts the performance of a machine learning system trained to separate plant roots from their background. In addition, we show examples of backscatter X-ray images upscaled by using the SR model. The current technology for non-intrusive root imaging acquires noisy and LR images. In this study, we show that this issue can be tackled by the incorporation of a deep-learning based SR model in the image formation process.

Abstract (translated)

URL

https://arxiv.org/abs/2003.13537

PDF

https://arxiv.org/pdf/2003.13537.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot