Paper Reading AI Learner

Frontal Low-rank Random Tensors for Fine-grained Action Segmentation

2020-04-06 14:42:57
Yan Zhang, Krikamol Muandet, Qianli Ma, Heiko Neumann, Siyu Tang

Abstract

Fine-grained action segmentation in long untrimmed videos is an important task for many applications such as surveillance, robotics, and human-computer interaction. To understand subtle and precise actions within a long time period, second-order information (e.g. feature covariance) or higher is reported to be effective in the literature. However, extracting such high-order information is considerably non-trivial. In particular, the dimensionality increases exponentially with the information order, and hence gaining more representation power also increases the computational cost and the risk of overfitting. In this paper, we propose an approach to representing high-order information for temporal action segmentation via a simple yet effective bilinear form. Specifically, our contributions are: (1) From the multilinear perspective, we derive a bilinear form of low complexity, assuming that the three-way tensor has low-rank frontal slices. (2) Rather than learning the tensor entries from data, we sample the entries from different underlying distributions, and prove that the underlying distribution influences the information order. (3) We employed our bilinear form as an intermediate layer in state-of-the-art deep neural networks, enabling to represent high-order information in complex deep models effectively and efficiently. Our experimental results demonstrate that the proposed bilinear form outperforms the previous state-of-the-art methods on the challenging temporal action segmentation task. One can see our project page for data, model and code: \url{this https URL}.

Abstract (translated)

URL

https://arxiv.org/abs/1906.01004

PDF

https://arxiv.org/pdf/1906.01004.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot