Paper Reading AI Learner

Teacher-Class Network: A Neural Network Compression Mechanism

2020-04-07 11:31:20
Shaiq Munir Malik, Mohbat Tharani, Murtaza Taj

Abstract

To solve the problem of the overwhelming size of Deep Neural Networks (DNN) several compression schemes have been proposed, one of them is teacher-student. Teacher-student tries to transfer knowledge from a complex teacher network to a simple student network. In this paper, we propose a novel method called a teacher-class network consisting of a single teacher and multiple student networks (i.e. class of students). Instead of transferring knowledge to one student only, the proposed method transfers a chunk of knowledge about the entire solution to each student. Our students are not trained for problem-specific logits, they are trained to mimic knowledge (dense representation) learned by the teacher network. Thus unlike the logits-based single student approach, the combined knowledge learned by the class of students can be used to solve other problems as well. These students can be designed to satisfy a given budget, e.g. for comparative purposes we kept the collective parameters of all the students less than or equivalent to that of a single student in the teacher-student approach . These small student networks are trained independently, making it possible to train and deploy models on memory deficient devices as well as on parallel processing systems such as data centers. The proposed teacher-class architecture is evaluated on several benchmark datasets including MNIST, FashionMNIST, IMDB Movie Reviews and CAMVid on multiple tasks including classification, sentiment classification and segmentation. Our approach outperforms the state-of-the-art single student approach in terms of accuracy as well as computational cost and in many cases it achieves an accuracy equivalent to the teacher network while having 10-30 times fewer parameters.

Abstract (translated)

URL

https://arxiv.org/abs/2004.03281

PDF

https://arxiv.org/pdf/2004.03281.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot