Paper Reading AI Learner

Knife and Threat Detectors

2020-04-04 12:41:28
David A. Noever, Sam E. Miller Noever

Abstract

Despite rapid advances in image-based machine learning, the threat identification of a knife wielding attacker has not garnered substantial academic attention. This relative research gap appears less understandable given the high knife assault rate (>100,000 annually) and the increasing availability of public video surveillance to analyze and forensically document. We present three complementary methods for scoring automated threat identification using multiple knife image datasets, each with the goal of narrowing down possible assault intentions while minimizing misidentifying false positives and risky false negatives. To alert an observer to the knife-wielding threat, we test and deploy classification built around MobileNet in a sparse and pruned neural network with a small memory requirement (< 2.2 megabytes) and 95% test accuracy. We secondly train a detection algorithm (MaskRCNN) to segment the hand from the knife in a single image and assign probable certainty to their relative location. This segmentation accomplishes both localization with bounding boxes but also relative positions to infer overhand threats. A final model built on the PoseNet architecture assigns anatomical waypoints or skeletal features to narrow the threat characteristics and reduce misunderstood intentions. We further identify and supplement existing data gaps that might blind a deployed knife threat detector such as collecting innocuous hand and fist images as important negative training sets. When automated on commodity hardware and software solutions one original research contribution is this systematic survey of timely and readily available image-based alerts to task and prioritize crime prevention countermeasures prior to a tragic outcome.

Abstract (translated)

URL

https://arxiv.org/abs/2004.03366

PDF

https://arxiv.org/pdf/2004.03366.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot