Paper Reading AI Learner

FineGym: A Hierarchical Video Dataset for Fine-grained Action Understanding

2020-04-14 17:55:21
Dian Shao, Yue Zhao, Bo Dai, Dahua Lin

Abstract

On public benchmarks, current action recognition techniques have achieved great success. However, when used in real-world applications, e.g. sport analysis, which requires the capability of parsing an activity into phases and differentiating between subtly different actions, their performances remain far from being satisfactory. To take action recognition to a new level, we develop FineGym, a new dataset built on top of gymnastic videos. Compared to existing action recognition datasets, FineGym is distinguished in richness, quality, and diversity. In particular, it provides temporal annotations at both action and sub-action levels with a three-level semantic hierarchy. For example, a "balance beam" event will be annotated as a sequence of elementary sub-actions derived from five sets: "leap-jump-hop", "beam-turns", "flight-salto", "flight-handspring", and "dismount", where the sub-action in each set will be further annotated with finely defined class labels. This new level of granularity presents significant challenges for action recognition, e.g. how to parse the temporal structures from a coherent action, and how to distinguish between subtly different action classes. We systematically investigate representative methods on this dataset and obtain a number of interesting findings. We hope this dataset could advance research towards action understanding.

Abstract (translated)

URL

https://arxiv.org/abs/2004.06704

PDF

https://arxiv.org/pdf/2004.06704.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot