Paper Reading AI Learner

Space Debris Ontology for ADR Capture Methods Selection

2020-04-19 14:45:32
Marko Jankovic (1), Mehmed Yüksel (1), Mohammad Mohammadzadeh Babr (1), Francesca Letizia (2), Vitali Braun (2) ((1) Robotics Innovation Center (RIC)--DFKI GmbH and University of Bremen, (2) IMS Space Consultancy for the European Space Operation Center (ESOC)--ESA)

Abstract

Studies have concluded that active debris removal (ADR) of the existing in-orbit mass is necessary. However, the quest for an optimal solution does not have a unique answer and the available data often lacks coherence. To improve this situation, modern knowledge representation techniques, that have been shaping the World Wide Web, medicine and pharmacy, should be employed. Prior efforts in the domain of space debris have only focused onto space situational awareness, neglecting ADR. To bridge this gap we present a domain-ontology of intact derelict objects, i.e. payloads and rocket bodies, for ADR capture methods selection. The ontology is defined on a minimal set of physical, dynamical and statistical parameters of a target object. The practicality and validity of the ontology are demonstrated by applying it onto a database of 30 representative objects, built by combining structured and unstructured data from publicly available sources. The analysis of results proves the ontology capable of inferring the most suited ADR capture methods for considered objects. Furthermore, it confirms its ability to handle the input data from different sources transparently, minimizing user input. The developed ontology provides an initial step towards a more comprehensive knowledge representation framework meant to improve data management and knowledge discovery in the domain of space debris. Furthermore, it provides a tool that should make the initial planning of future ADR missions simpler yet more systematic.

Abstract (translated)

URL

https://arxiv.org/abs/2004.08866

PDF

https://arxiv.org/pdf/2004.08866.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot