Paper Reading AI Learner

EMPIR: Ensembles of Mixed Precision Deep Networks for Increased Robustness against Adversarial Attacks

2020-04-21 17:17:09
Sanchari Sen, Balaraman Ravindran, Anand Raghunathan

Abstract

Ensuring robustness of Deep Neural Networks (DNNs) is crucial to their adoption in safety-critical applications such as self-driving cars, drones, and healthcare. Notably, DNNs are vulnerable to adversarial attacks in which small input perturbations can produce catastrophic misclassifications. In this work, we propose EMPIR, ensembles of quantized DNN models with different numerical precisions, as a new approach to increase robustness against adversarial attacks. EMPIR is based on the observation that quantized neural networks often demonstrate much higher robustness to adversarial attacks than full precision networks, but at the cost of a substantial loss in accuracy on the original (unperturbed) inputs. EMPIR overcomes this limitation to achieve the 'best of both worlds', i.e., the higher unperturbed accuracies of the full precision models combined with the higher robustness of the low precision models, by composing them in an ensemble. Further, as low precision DNN models have significantly lower computational and storage requirements than full precision models, EMPIR models only incur modest compute and memory overheads compared to a single full-precision model (<25% in our evaluations). We evaluate EMPIR across a suite of DNNs for 3 different image recognition tasks (MNIST, CIFAR-10 and ImageNet) and under 4 different adversarial attacks. Our results indicate that EMPIR boosts the average adversarial accuracies by 42.6%, 15.2% and 10.5% for the DNN models trained on the MNIST, CIFAR-10 and ImageNet datasets respectively, when compared to single full-precision models, without sacrificing accuracy on the unperturbed inputs.

Abstract (translated)

URL

https://arxiv.org/abs/2004.10162

PDF

https://arxiv.org/pdf/2004.10162.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot