Paper Reading AI Learner

QUANOS- Adversarial Noise Sensitivity Driven Hybrid Quantization of Neural Networks

2020-04-22 15:56:31
Priyadarshini Panda

Abstract

Deep Neural Networks (DNNs) have been shown to be vulnerable to adversarial attacks, wherein, a model gets fooled by applying slight perturbations on the input. With the advent of Internet-of-Things and the necessity to enable intelligence in embedded devices, low-power and secure hardware implementation of DNNs is vital. In this paper, we investigate the use of quantization to potentially resist adversarial attacks. Several recent studies have reported remarkable results in reducing the energy requirement of a DNN through quantization. However, no prior work has considered the relationship between adversarial sensitivity of a DNN and its effect on quantization. We propose QUANOS- a framework that performs layer-specific hybrid quantization based on Adversarial Noise Sensitivity (ANS). We identify a novel noise stability metric (ANS) for DNNs, i.e., the sensitivity of each layer's computation to adversarial noise. ANS allows for a principled way of determining optimal bit-width per layer that incurs adversarial robustness as well as energy-efficiency with minimal loss in accuracy. Essentially, QUANOS assigns layer significance based on its contribution to adversarial perturbation and accordingly scales the precision of the layers. A key advantage of QUANOS is that it does not rely on a pre-trained model and can be applied in the initial stages of training. We evaluate the benefits of QUANOS on precision scalable Multiply and Accumulate (MAC) hardware architectures with data gating and subword parallelism capabilities. Our experiments on CIFAR10, CIFAR100 datasets show that QUANOS outperforms homogenously quantized 8-bit precision baseline in terms of adversarial robustness (3%-4% higher) while yielding improved compression (>5x) and energy savings (>2x) at iso-accuracy.

Abstract (translated)

URL

https://arxiv.org/abs/2004.11233

PDF

https://arxiv.org/pdf/2004.11233.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot