Paper Reading AI Learner

Towards Prediction Explainability through Sparse Communication

2020-04-28 22:27:19
Marcos V. Treviso, André F. T. Martins

Abstract

Explainability is a topic of growing importance in NLP. In this work, we provide a unified perspective of explainability as a communication problem between an explainer and a layperson about a classifier's decision. We use this framework to compare several prior approaches for extracting explanations, including gradient methods, representation erasure, and attention mechanisms, in terms of their communication success. In addition, we reinterpret these methods at the light of classical feature selection, and we use this as inspiration to propose new embedded methods for explainability, through the use of selective, sparse attention. Experiments in text classification, natural language entailment, and machine translation, using different configurations of explainers and laypeople (including both machines and humans), reveal an advantage of attention-based explainers over gradient and erasure methods. Furthermore, human evaluation experiments show promising results with post-hoc explainers trained to optimize communication success and faithfulness.

Abstract (translated)

URL

https://arxiv.org/abs/2004.13876

PDF

https://arxiv.org/pdf/2004.13876.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot