Paper Reading AI Learner

Projection Inpainting Using Partial Convolution for Metal Artifact Reduction

2020-05-02 09:32:35
Lin Yuan, Yixing Huang, Andreas Maier

Abstract

In computer tomography, due to the presence of metal implants in the patient body, reconstructed images will suffer from metal artifacts. In order to reduce metal artifacts, metals are typically removed in projection images. Therefore, the metal corrupted projection areas need to be inpainted. For deep learning inpainting methods, convolutional neural networks (CNNs) are widely used, for example, the U-Net. However, such CNNs use convolutional filter responses on both valid and corrupted pixel values, resulting in unsatisfactory image quality. In this work, partial convolution is applied for projection inpainting, which only relies on valid pixels values. The U-Net with partial convolution and conventional convolution are compared for metal artifact reduction. Our experiments demonstrate that the U-Net with partial convolution is able to inpaint the metal corrupted areas better than that with conventional convolution.

Abstract (translated)

URL

https://arxiv.org/abs/2005.00762

PDF

https://arxiv.org/pdf/2005.00762.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot