Paper Reading AI Learner

On the Convergence Rate of Projected Gradient Descent for a Back-Projection based Objective

2020-05-03 00:58:23
Tom Tirer, Raja Giryes

Abstract

Ill-posed linear inverse problems appear in many fields of imaging science and engineering, and are typically addressed by solving optimization problems, which are composed of fidelity and prior terms or constraints. Traditionally, the research has been focused on different prior models, while the least squares (LS) objective has been the common choice for the fidelity term. However, recently a few works have considered a back-projection (BP) based fidelity term as an alternative to the LS, and demonstrated excellent reconstruction results for popular inverse problems. These prior works have also empirically shown that using the BP term, rather than the LS term, requires fewer iterations of plain and accelerated proximal gradient algorithms. In the current paper, we examine the convergence rate of the BP objective for the projected gradient descent (PGD) algorithm and identify an inherent source for its faster convergence compared to the LS objective. Numerical experiments with both $\ell_1$-norm and GAN-based priors corroborate our theoretical results for PGD. We also draw the connection to the observed behavior for proximal methods.

Abstract (translated)

URL

https://arxiv.org/abs/2005.00959

PDF

https://arxiv.org/pdf/2005.00959.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot