Paper Reading AI Learner

Towards Transparency of TD-RL Robotic Systems with a Human Teacher

2020-05-12 17:09:42
Marco Matarese, Silvia Rossi, Alessandra Sciutti, Francesco Rea

Abstract

The high request for autonomous and flexible HRI implies the necessity of deploying Machine Learning (ML) mechanisms in the robot control. Indeed, the use of ML techniques, such as Reinforcement Learning (RL), makes the robot behaviour, during the learning process, not transparent to the observing user. In this work, we proposed an emotional model to improve the transparency in RL tasks for human-robot collaborative scenarios. The architecture we propose supports the RL algorithm with an emotional model able to both receive human feedback and exhibit emotional responses based on the learning process. The model is entirely based on the Temporal Difference (TD) error. The architecture was tested in an isolated laboratory with a simple setup. The results highlight that showing its internal state through an emotional response is enough to make a robot transparent to its human teacher. People also prefer to interact with a responsive robot because they are used to understand their intentions via emotions and social signals.

Abstract (translated)

URL

https://arxiv.org/abs/2005.05926

PDF

https://arxiv.org/pdf/2005.05926.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot