Paper Reading AI Learner

Low-Dose CT Image Denoising Using Parallel-Clone Networks

2020-05-14 05:21:33
Siqi Li, Guobao Wang

Abstract

Deep neural networks have a great potential to improve image denoising in low-dose computed tomography (LDCT). Popular ways to increase the network capacity include adding more layers or repeating a modularized clone model in a sequence. In such sequential architectures, the noisy input image and end output image are commonly used only once in the training model, which however limits the overall learning performance. In this paper, we propose a parallel-clone neural network method that utilizes a modularized network model and exploits the benefit of parallel input, parallel-output loss, and clone-toclone feature transfer. The proposed model keeps a similar or less number of unknown network weights as compared to conventional models but can accelerate the learning process significantly. The method was evaluated using the Mayo LDCT dataset and compared with existing deep learning models. The results show that the use of parallel input, parallel-output loss, and clone-to-clone feature transfer all can contribute to an accelerated convergence of deep learning and lead to improved image quality in testing. The parallel-clone network has been demonstrated promising for LDCT image denoising.

Abstract (translated)

URL

https://arxiv.org/abs/2005.06724

PDF

https://arxiv.org/pdf/2005.06724.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot