Paper Reading AI Learner

Manifold Alignment for Semantically Aligned Style Transfer

2020-05-21 16:52:37
Jing Huo, Shiyin Jin, Wenbin Li, Jing Wu, Yu-Kun Lai, Yinghuan Shi, Yang Gao

Abstract

Given a content image and a style image, the goal of style transfer is to synthesize an output image by transferring the target style to the content image. Currently, most of the methods address the problem with global style transfer, assuming styles can be represented by global statistics, such as Gram matrices or covariance matrices. In this paper, we make a different assumption that local semantically aligned (or similar) regions between the content and style images should share similar style patterns. Based on this assumption, content features and style features are seen as two sets of manifolds and a manifold alignment based style transfer (MAST) method is proposed. MAST is a subspace learning method which learns a common subspace of the content and style features. In the common subspace, content and style features with larger feature similarity or the same semantic meaning are forced to be close. The learned projection matrices are added with orthogonality constraints so that the mapping can be bidirectional, which allows us to project the content features into the common subspace, and then into the original style space. By using a pre-trained decoder, promising stylized images are obtained. The method is further extended to allow users to specify corresponding semantic regions between content and style images or using semantic segmentation maps as guidance. Extensive experiments show the proposed MAST achieves appealing results in style transfer.

Abstract (translated)

URL

https://arxiv.org/abs/2005.10777

PDF

https://arxiv.org/pdf/2005.10777.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot