Paper Reading AI Learner

AnimGAN: A Spatiotemporally-Conditioned Generative Adversarial Network for Character Animation

2020-05-23 07:47:46
Maryam Sadat Mirzaei, Kourosh Meshgi, Etienne Frigo, Toyoaki Nishida


tract: Producing realistic character animations is one of the essential tasks in human-AI interactions. Considered as a sequence of poses of a humanoid, the task can be considered as a sequence generation problem with spatiotemporal smoothness and realism constraints. Additionally, we wish to control the behavior of AI agents by giving them what to do and, more specifically, how to do it. We proposed a spatiotemporally-conditioned GAN that generates a sequence that is similar to a given sequence in terms of semantics and spatiotemporal dynamics. Using LSTM-based generator and graph ConvNet discriminator, this system is trained end-to-end on a large gathered dataset of gestures, expressions, and actions. Experiments showed that compared to traditional conditional GAN, our method creates plausible, realistic, and semantically relevant humanoid animation sequences that match user expectations.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot