Paper Reading AI Learner

Global Distance-distributions Separation for Unsupervised Person Re-identification

2020-06-01 07:05:39
Xin Jin, Cuiling Lan, Wenjun Zeng, Zhibo Chen

Abstract

Supervised person re-identification (ReID) often has poor scalability and usability in real-world deployments due to domain gaps and the lack of annotations for the target domain data. Unsupervised person ReID through domain adaptation is attractive yet challenging. Existing unsupervised ReID approaches often fail in correctly identifying the positive samples and negative samples through the distance-based matching/ranking. The two distributions of distances for positive sample pairs (Pos-distr) and negative sample pairs (Neg-distr) are often not well separated, having large overlap. To address this problem, we introduce a global distance-distributions separation (GDS) constraint over the two distributions to encourage the clear separation of positive and negative samples from a global view. We model the two global distance distributions as Gaussian distributions and push apart the two distributions while encouraging their sharpness in the unsupervised training process. Particularly, to model the distributions from a global view and facilitate the timely updating of the distributions and the GDS related losses, we leverage a momentum update mechanism for building and maintaining the distribution parameters (mean and variance) and calculate the loss on the fly during the training. Distribution-based hard mining is proposed to further promote the separation of the two distributions. We validate the effectiveness of the GDS constraint in unsupervised ReID networks. Extensive experiments on multiple ReID benchmark datasets show our method leads to significant improvement over the baselines and achieves the state-of-the-art performance.

Abstract (translated)

URL

https://arxiv.org/abs/2006.00752

PDF

https://arxiv.org/pdf/2006.00752.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot