Paper Reading AI Learner

Resolving Class Imbalance in Object Detection with Weighted Cross Entropy Losses

2020-06-02 06:36:12
Trong Huy Phan, Kazuma Yamamoto

Abstract

Object detection is an important task in computer vision which serves a lot of real-world applications such as autonomous driving, surveillance and robotics. Along with the rapid thrive of large-scale data, numerous state-of-the-art generalized object detectors (e.g. Faster R-CNN, YOLO, SSD) were developed in the past decade. Despite continual efforts in model modification and improvement in training strategies to boost detection accuracy, there are still limitations in performance of detectors when it comes to specialized datasets with uneven object class distributions. This originates from the common usage of Cross Entropy loss function for object classification sub-task that simply ignores the frequency of appearance of object class during training, and thus results in lower accuracies for object classes with fewer number of samples. Class-imbalance in general machine learning has been widely studied, however, little attention has been paid on the subject of object detection. In this paper, we propose to explore and overcome such problem by application of several weighted variants of Cross Entropy loss, for examples Balanced Cross Entropy, Focal Loss and Class-Balanced Loss Based on Effective Number of Samples to our object detector. Experiments with BDD100K (a highly class-imbalanced driving database acquired from on-vehicle cameras capturing mostly Car-class objects and other minority object classes such as Bus, Person and Motor) have proven better class-wise performances of detector trained with the afore-mentioned loss functions.

Abstract (translated)

URL

https://arxiv.org/abs/2006.01413

PDF

https://arxiv.org/pdf/2006.01413.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot