Paper Reading AI Learner

Revisiting the Importance of Encoding Logic Rules in Sentiment Classification

2018-08-23 13:03:55
Kalpesh Krishna, Preethi Jyothi, Mohit Iyyer

Abstract

We analyze the performance of different sentiment classification models on syntactically complex inputs like A-but-B sentences. The first contribution of this analysis addresses reproducible research: to meaningfully compare different models, their accuracies must be averaged over far more random seeds than what has traditionally been reported. With proper averaging in place, we notice that the distillation model described in <a href="https://export.arxiv.org/abs/1603.06318">arXiv:1603.06318v4</a> [cs.LG], which incorporates explicit logic rules for sentiment classification, is ineffective. In contrast, using contextualized ELMo embeddings (<a href="https://export.arxiv.org/abs/1802.05365">arXiv:1802.05365v2</a> [cs.CL]) instead of logic rules yields significantly better performance. Additionally, we provide analysis and visualizations that demonstrate ELMo's ability to implicitly learn logic rules. Finally, a crowdsourced analysis reveals how ELMo outperforms baseline models even on sentences with ambiguous sentiment labels.

Abstract (translated)

我们分析了不同情绪分类模型在语法复杂输入(如A-but-B句子)上的表现。该分析的第一个贡献涉及可重复的研究:为了有意义地比较不同的模型,它们的准确度必须在比传统报告的更随机的种子上取平均值。通过适当的平均,我们注意到<a href="https://export.arxiv.org/abs/1603.06318"> arXiv:1603.06318v4 </a> [cs.LG]中描述的蒸馏模型,其中包含情感分类的明确逻辑规则是无效的。相比之下,使用上下文化ELMo嵌入(<a href="https://export.arxiv.org/abs/1802.05365"> arXiv:1802.05365v2 </a> [cs.CL])而不是逻辑规则可以显着提高性能。此外,我们还提供分析和可视化,以展示ELMo隐式学习逻辑规则的能力。最后,众包分析揭示了ELMo甚至在具有模糊情绪标签的句子上也优于基线模型。

URL

https://arxiv.org/abs/1808.07733

PDF

https://arxiv.org/pdf/1808.07733.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot