Paper Reading AI Learner

One Ring to Rule Them All: Certifiably Robust Geometric Perception with Outliers

2020-06-11 19:46:42
Heng Yang, Luca Carlone

Abstract

We propose a general and practical framework to design certifiable algorithms for robust geometric perception in the presence of a large amount of outliers. We investigate the use of a truncated least squares (TLS) cost function, which is known to be robust to outliers, but leads to hard, nonconvex, and nonsmooth optimization problems. Our first contribution is to show that -for a broad class of geometric perception problems- TLS estimation can be reformulated as an optimization over the ring of polynomials and Lasserre's hierarchy of convex moment relaxations is empirically tight at the minimum relaxation order (i.e., certifiably obtains the global minimum of the nonconvex TLS problem). Our second contribution is to exploit the structural sparsity of the objective and constraint polynomials and leverage basis reduction to significantly reduce the size of the semidefinite program (SDP) resulting from the moment relaxation, without compromising its tightness. Our third contribution is to develop scalable dual optimality certifiers from the lens of sums-of-squares (SOS) relaxation, that can compute the suboptimality gap and possibly certify global optimality of any candidate solution (e.g., returned by fast heuristics such as RANSAC or graduated non-convexity). Our dual certifiers leverage Douglas-Rachford Splitting to solve a convex feasibility SDP. Numerical experiments across different perception problems, including high-integrity satellite pose estimation, demonstrate the tightness of our relaxations, the correctness of the certification, and the scalability of the proposed dual certifiers to large problems, beyond the reach of current SDP solvers.

Abstract (translated)

URL

https://arxiv.org/abs/2006.06769

PDF

https://arxiv.org/pdf/2006.06769.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot