Paper Reading AI Learner

Unmasking the Inductive Biases of Unsupervised Object Representations for Video Sequences

2020-06-12 09:37:24
Marissa A. Weis, Kashyap Chitta, Yash Sharma, Wieland Brendel, Matthias Bethge, Andreas Geiger, Alexander S. Ecker

Abstract

Perceiving the world in terms of objects is a crucial prerequisite for reasoning and scene understanding. Recently, several methods have been proposed for unsupervised learning of object-centric representations. However, since these models have been evaluated with respect to different downstream tasks, it remains unclear how they compare in terms of basic perceptual abilities such as detection, figure-ground segmentation and tracking of individual objects. In this paper, we argue that the established evaluation protocol of multi-object tracking tests precisely these perceptual qualities and we propose a new benchmark dataset based on procedurally generated video sequences. Using this benchmark, we compare the perceptual abilities of three state-of-the-art unsupervised object-centric learning approaches. Towards this goal, we propose a video-extension of MONet, a seminal object-centric model for static scenes, and compare it to two recent video models: OP3, which exploits clustering via spatial mixture models, and TBA, which uses an explicit factorization via spatial transformers. Our results indicate that architectures which employ unconstrained latent representations based on per-object variational autoencoders and full-image object masks are able to learn more powerful representations in terms of object detection, segmentation and tracking than the explicitly parameterized spatial transformer based architecture. We also observe that none of the methods are able to gracefully handle the most challenging tracking scenarios, suggesting that our synthetic video benchmark may provide fruitful guidance towards learning more robust object-centric video representations.

Abstract (translated)

URL

https://arxiv.org/abs/2006.07034

PDF

https://arxiv.org/pdf/2006.07034.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot