Paper Reading AI Learner

HyperFlow: Representing 3D Objects as Surfaces

2020-06-15 19:18:02
Przemysław Spurek, Maciej Zięba, Jacek Tabor, Tomasz Trzciński

Abstract

In this work, we present HyperFlow - a novel generative model that leverages hypernetworks to create continuous 3D object representations in a form of lightweight surfaces (meshes), directly out of point clouds. Efficient object representations are essential for many computer vision applications, including robotic manipulation and autonomous driving. However, creating those representations is often cumbersome, because it requires processing unordered sets of point clouds. Therefore, it is either computationally expensive, due to additional optimization constraints such as permutation invariance, or leads to quantization losses introduced by binning point clouds into discrete voxels. Inspired by mesh-based representations of objects used in computer graphics, we postulate a fundamentally different approach and represent 3D objects as a family of surfaces. To that end, we devise a generative model that uses a hypernetwork to return the weights of a Continuous Normalizing Flows (CNF) target network. The goal of this target network is to map points from a probability distribution into a 3D mesh. To avoid numerical instability of the CNF on compact support distributions, we propose a new Spherical Log-Normal function which models density of 3D points around object surfaces mimicking noise introduced by 3D capturing devices. As a result, we obtain continuous mesh-based object representations that yield better qualitative results than competing approaches, while reducing training time by over an order of magnitude.

Abstract (translated)

URL

https://arxiv.org/abs/2006.08710

PDF

https://arxiv.org/pdf/2006.08710.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot