Paper Reading AI Learner

Multi-Objective CNN Based Algorithm for SAR Despeckling

2020-06-16 10:15:42
Sergio Vitale, Giampaolo Ferraioli, Vito Pascazio

Abstract

Deep learning (DL) in remote sensing has nowadays became an effective operative tool: it is largely used in applications such as change detection, image restoration, segmentation, detection and classification. With reference to synthetic aperture radar (SAR) domain the application of DL techniques is not straightforward due to non trivial interpretation of SAR images, specially caused by the presence of speckle. Several deep learning solutions for SAR despeckling have been proposed in the last few years. Most of these solutions focus on the definition of different network architectures with similar cost functions not involving SAR image properties. In this paper, a convolutional neural network (CNN) with a multi-objective cost function taking care of spatial and statistical properties of the SAR image is proposed. This is achieved by the definition of a peculiar loss function obtained by the weighted combination of three different terms. Each of this term is dedicated mainly to one of the following SAR image characteristics: spatial details, speckle statistical properties and strong scatterers preservation. Their combination allows to balance these effects. Moreover, a specifically designed architecture is proposed for effectively extract distinctive features within the considered framework. Experiments on simulated and real SAR images show the accuracy of the proposed method compared to the State-of-Art despeckling algorithms, both from quantitative and qualitative point of view. The importance of considering such SAR properties in the cost function is crucial for a correct noise rejection and object preservation in different underlined scenarios, such as homogeneous, heterogeneous and extremely heterogeneous.

Abstract (translated)

URL

https://arxiv.org/abs/2006.09050

PDF

https://arxiv.org/pdf/2006.09050.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot