Paper Reading AI Learner

Memory Transformer

2020-06-20 09:06:27
Mikhail S. Burtsev, Grigory V. Sapunov

Abstract

Transformer-based models have achieved state-of-the-art results in many natural language processing (NLP) tasks. The self-attention architecture allows us to combine information from all elements of a sequence into context-aware representations. However, all-to-all attention severely hurts the scaling of the model to large sequences. Another limitation is that information about the context is stored in the same element-wise representations. This makes the processing of properties related to the sequence as a whole more difficult. Adding trainable memory to selectively store local as well as global representations of a sequence is a promising direction to improve the Transformer model. Memory-augmented neural networks (MANNs) extend traditional neural architectures with general-purpose memory for representations. MANNs have demonstrated the capability to learn simple algorithms like Copy or Reverse and can be successfully trained via backpropagation on diverse tasks from question answering to language modeling outperforming RNNs and LSTMs of comparable complexity. In this work, we propose and study two extensions of the Transformer baseline (1) by adding memory tokens to store non-local representations, and (2) creating memory bottleneck for the global information. We evaluate these memory augmented Transformers on machine translation task and demonstrate that memory size positively correlates with the model performance. Attention patterns over the memory suggest that it improves the model's ability to process a global context. We expect that the application of Memory Transformer architectures to the tasks of language modeling, reading comprehension, and text summarization, as well as other NLP tasks that require the processing of long contexts will contribute to solving challenging problems of natural language understanding and generation.

Abstract (translated)

URL

https://arxiv.org/abs/2006.11527

PDF

https://arxiv.org/pdf/2006.11527.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot