Paper Reading AI Learner

Road obstacles positional and dynamic features extraction combining object detection, stereo disparity maps and optical flow data

2020-06-24 19:29:06
Thiago Rateke, Aldo von Wangenheim

Abstract

One of the most relevant tasks in an intelligent vehicle navigation system is the detection of obstacles. It is important that a visual perception system for navigation purposes identifies obstacles, and it is also important that this system can extract essential information that may influence the vehicle's behavior, whether it will be generating an alert for a human driver or guide an autonomous vehicle in order to be able to make its driving decisions. In this paper we present an approach for the identification of obstacles and extraction of class, position, depth and motion information from these objects that employs data gained exclusively from passive vision. We performed our experiments on two different data-sets and the results obtained shown a good efficacy from the use of depth and motion patterns to assess the obstacles' potential threat status.

Abstract (translated)

URL

https://arxiv.org/abs/2006.14011

PDF

https://arxiv.org/pdf/2006.14011.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot