Paper Reading AI Learner

Data augmentation versus noise compensation for x- vector speaker recognition systems in noisy environments

2020-06-29 09:50:45
Mohammad Mohammadamini (LIA), Driss Matrouf (LIA)

Abstract

The explosion of available speech data and new speaker modeling methods based on deep neural networks (DNN) have given the ability to develop more robust speaker recognition systems. Among DNN speaker modelling techniques, x-vector system has shown a degree of robustness in noisy environments. Previous studies suggest that by increasing the number of speakers in the training data and using data augmentation more robust speaker recognition systems are achievable in noisy environments. In this work, we want to know if explicit noise compensation techniques continue to be effective despite the general noise robustness of these systems. For this study, we will use two different x-vector networks: the first one is trained on Voxceleb1 (Protocol1), and the second one is trained on Voxceleb1+Voxveleb2 (Protocol2). We propose to add a denoising x-vector subsystem before scoring. Experimental results show that, the x-vector system used in Protocol2 is more robust than the other one used Protocol1. Despite this observation we will show that explicit noise compensation gives almost the same EER relative gain in both protocols. For example, in the Protocol2 we have 21% to 66% improvement of EER with denoising techniques.

Abstract (translated)

URL

https://arxiv.org/abs/2006.15903

PDF

https://arxiv.org/pdf/2006.15903.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot